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The scattering function for a harmonic librator has been calculated for small angles of oscillation. 
The results are compared with the usual form of the structure factor. To calculate the probability 
density function for an atom constrained to move on the surface of a sphere while oscillating as 
part  of a rigid body, the harmonic potential function for an oscillator was derived as a function of 
angular displacements on the surface of the sphere. 

1. I n t r o d u c t i o n  

For the past  several years, vibrat ions of polyatomic 
ions and  molecules have been analyzed in terms of 
rigid body motion. This rigid body t rea tment  (e.g., 
Cruickshank, 1956) consists of separat ing the molecular 
motion into two par ts :  a t rans la t ional  v ibra t ion and 
a torsional oscillation or l ibration. While  t rans la t ional  
vibrat ions can be sat isfactori ly described by  the 
Debye-Wal le r  theory  (James, 1954), the torsional 
oscillations cannot  since they  defini tely do not  sat isfy 
the assumpt ion  tha t  the v ibra t ion  consists of normal  
l inear displacements.  In  view of this fact, the  effect 
of l ibrat ions on the ref inement  of crystal  structures 
using the usual s t ructure factor equations is ra ther  
obscure, and  a t r ea tmen t  tha t  expl ici t ly  takes the 
l ibrat ions into account is desirable. 

In  this  paper,  an  expression will be derived tha t  is 
val id  for small  oscillations, and  the result  will be 
compared with the usual form of the structure factor. 

2. T h e o r y  

The model  considered below consists of a set of atoms 
oscillating about  a point. No t rans la t ional  motion will 
be included since the Debye-Wal le r  theory accounts 
for this  motion quite adequately.  

If  the posit ion vector of the n th  atom in the struc- 
ture factor expression is wri t ten  as r~+r~ ,  where r~ 
is the vector to the center of oscillation and r .  is the 
vector from the center of oscillation to the instan- 
taneous atomic position, then  the structure factor, 

~r 

F(H)  = ~ f ~  exp [2~iH.r~]  exp [ 2 g i H . r n ] ,  (1) 

where H is the reciprocal lat t ice vector, 5 r is the 
number  of atoms in the uni t  cell, and fn is the scatter- 
ing factor for the n th  atom. Bars over a quan t i ty  
indicate an average over the quant i ty .  

The funct ion gn, defined by  
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gn : exp [2:~iH.rn] = I exp [27HH.rn].DdA/l DdA,  
(2) 

contains the scattering by  the torsional oscillator. 
Since the atomic position vectors are taken  relat ive 
to centers of l ibration,  lrn[ is a constant  for a given n. 
The average in (2) is computed by integrat ing over 
the surface of a sphere of radius [rnl by  using an  
appropriate  d is t r ibut ion funct ion D which is propor- 
t ional  to the probabi l i ty  tha t  rn lies in dA. 

In  order to reduce the complexi ty  of the notation,  
the subscript  n will be omit ted in the remainder  of 
the paper. Cartesian coordinate systems will be used 
in real and  reciprocal spaces; thus  r = xi + yj + zk, and  
H = h*i + k*j + /*k .  Here i, j, and  k are orthogonal 
uni t  vectors; i.e. x, y, and  z have units  of length and  
h*, k*, and l* are not integers bu t  the components 
of the reciprocal latt ice vector. The sum h*x + k*y + l*z 
will reduce to h(x/a) + k(y/b) + l(z/c) in the crystallo- 
graphic system since dot products are invar ian t  under  
the  t ransformat ions  used. 

To simplify the integrations in (4), the following 
t ransformat ions  were made. If  r0, the vector from the 
center of l ibrat ion to the equi l ibr ium position of an 
atom, has the polar coordinate angles 0o and q~o, 
the t ransformat ion  (i) (co 00 o  0 si 00co  0)( ) 

= cos 0o sin q)o cos~po sin 0o sin ~o Y' (3) 
- - s in  0o 0 cos 0o z' 

relates the pr imed and unpr imed  systems such tha t  
the z' axis is parallel  to ro, and the x' axis is in a plane 
containing both z and z' (Figs. l(a) and  (b)). The 
t ransformat ion  

0 \ z " /  
(4) 

relates the double-primed and  pr imed systems such 
tha t  the principal  axes of l ibrat ion on the surface of 
the sphere as defined in Appendix  A are parallel  to 
x"  and  y" (Fig. l(b)). The ins tantaneous  position of 
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square angular  displacements parallel  to x"  and  y'" 
of the atom oscillating about  r0. 

For small  angles, 
sin 0 " =  0" 

cos 0 " =  1 --  0"2 /2  . (8) 

Then the scattering funct ion averaged over the  
surface of a sphere is 

g = I\ I da dfl exp 2 ~ i H .  r exp - (a2a2 + b2f12) 
-- --oo 

- (9)  
f_~ daf_~ d f l exp - ( a2~2+b2f l2 )  

Because of the exponent ial  damping  factor the  
difference between integrat ion over a sphere and  over 
all of the a, fl space is small. 

By  subst i tut ing (5) and  (8) into (9) and integrat ing,  
(9) becomes 

g = 

(b) (c) × 

:Fig. 1. Coordinate transformations. (a) x' is in the plane of 
z, z'. The vector r (parallel to z') is the vector from the center 
of oscillation to the equilibrium position of a. librating atom. 
(b) x" and y'" are the principal axes of libration. (c) Polar 
coordinate system used to express position of r. 

the  vector r oscillating about  the vector re is thus  
expressed in the spherical coordinates r, 0", 9"  (Fig. 
l(c)), where r is a constant  equal to Irol. 

F rom these transformations,  one obtains:  

x = r 0 [cos 00 cos 90 (cos 9 sin 0" cos 9 "  - sin 9 sin 0" sin 9")  
-- sin 9o (sin 9 sin 0" cos 9 "  + cos 9 sin 0" sin 9")  
+ cos 9o sin 0 o cos 0"] 

y = re [cos 0o sin 9o (cos 9 sin 0" cos 9 "  -- sin 9 sin 0" sin 9")  
+ cos 9o (sin 9 sin 0" cos 9 "  + cos 9 sin 0" sin 9")  
+ sin 0o sin 90 cos 0"] 

z = r0 [ -  sin 00 (cos 9 sin 0" cos 9 "  - sin 9 sin 0" sin 9")  
+ cos 00 cos 0" ] .  (5) 

The probabi l i ty  densi ty  funct ion was chosen as 

where 

1 ~[ --t2a 2 ] 
(1 + $2/a4)~14 exp ( [ 4 ( ~ T ~ 2 ) j  

-F [i (2S t a n - l S / a 2 t ~ S  
2 + 4(a4+$2))]}" 

1 ~[ . - - t~b 2 ] 
(1 + $2/b4) 1/4 exp [ [ 4 ( b 4 +  S2)J 

_~_ [ i  (/.-- tan__: l S / b  e t~S  ~1[ 

\ 2 + 4 (b4+S2) / J / '  (10) 

S = ~ (h*xo + k*yo + l*zo) , 

t , = 2 ~ r { h * [  ZoXo_ royo . 91 L(x~ + y~).2 cos w (xo~ + y~).2 sm 

+ k , [  ~0y0 x0~.o . ] 
(x~ + y~),,2 cos 9 + (Xo + y ~ 2  sm 9 

- l* [ ( x 2 + y 2 )  ]/2 COS 9]}  , 

ZoXo . yore cos 9. t ~ ~---2:T/: {h* [ (X2_~y2)~-2s lng- - (X2_~_y2) l /2  

(x~ + y~)~ sin 9 + (z~ + y~).2 cos 9 

+ l*[(Xo+y~) ~/2sin 9]} • (11) 

D = exp [-(a2a2+b2f12)], (6) 
where  

~ 0"  COS 9 "  
fi = 0" sin 9" .  (7) 

The assumptions and derivat ion tha t  lead to this 
funct ion are given in Appendix  A. 

1 "2 a n d  1 "2 In  (6) a2 and b 2 are equal to ~%~ -eo~x~, respec- 
,,2 a n d  ',2 t ively,  where %y wxx are the respective mean  

3.  I n t e r p r e t a t i o n  

Equat ion  (10) accurately describes the scattering to 
the degree tha t  the approximat ion  (8) is valid. I t  
would now be interesting to establish relat ionships 
between (10) and the usual form of the structure 
factor expression. 

Defining the quanti t ies ~ and ~ as the average and  
mean-square projections of r on r0 gives 
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f:  I~r  cos O't sin Ott exp [ -  (ae cose~tt -}- besin2q)'t)Otte] dcftt dOtt 

f~ f e" sin 0" exp [ - (a ~ cos ~ ~" + b e sin e of") 0 ''e] d of" dO" 
0 ¢o 

fn f~TeeoseOtt sinOtt exp[-(aecoseq)tt-~ubesineqp't)Ott2]dqp'tdO '' 
- -  o r 2 = 

f" fe" sin 0" exp [ - (a ~ cose~ ' '  + b e sine ~")0 ''e] dcf" dO" 
0 ~0 

(12) 

(13) 

I t  may be shown that  (see Appendix B) 

1 1 
~=ro 1 4a~ 4b e 

and 

If 

then 

(, 

1 7 7 

+ 4 s ~ + 9 - ~ a ~ + 9 ~  +" " ' ]  
, ( 1 4 )  

_ r (1, ) (V---r? = , ~ - ~  = -~ ~ + ~ +  . . . .  (15) 

$2 S e 
a 9.>> a- ~ and b e>> b- ~, (16) 

~2~ -I/4" (1 + ~2~ -1/4 
+ a 4] b 4/ 

1 S 2 

and 

exp - [4(a4+ $9.) + 4(b4 + S~.) ] 

The terms in the exponents of (17) and (18) are of 
the form 

2~(h*e#11 + l*e#e~.... + 2h*k*#le + • • • ) • 

I t  is possible to prove tha t  the terms #~  etc. are the 
tensor components of a displacement matr ix;  i.e., 
they  correspond to the usual components of an an- 
isotropic temperature factor. In  the x", y",  z" space, 
the principal mean-square displacements perpendicular 

"~ and r~ ''~ r~/2a" ~nd r~/2b% to ro are r~O)yy (Dxx or 
The mean-square displacement from the average 

value of the projection of r on r0 was given in (15). 
The mean-square displacement matr ix  in the double- 
primed space is then 

0 0 ) 
U" = 0 r~/2b 9 0 . (19) 

0 0 r~[1/8a 4 + 1/8b 4] 

To find the matr ix  in x, y, z space, mult iply U" on 
the left and right by the two transformation matrices 
defined in (3) and (4) and their inverses (transposes), 

respectively. The components of the resulting matr ix  
are identical with the coefficients of h .2, k .2, h 'k*,  
etc. in (17) and (18). In other words, to the extent  
tha t  the approximations in (17) and (18) are valid, 
the exponential damping factor in g may  be inter- 
preted as an anisotropic Debye-Waller  factor. 

The effect of libration on the apparent  coordinates 
may be part ial ly determined by using the approxima- 
tion 

( ½ \tan -I 

(1 1) (20) 2~ ( h*xo + k*yo + l*zo) . -~ + -~ • 

From the preceding paragraph and equations (10), 
(14), and (20) 

/2~i(h*5 + k*9 + l*5) + i g exp 

× L:~(a~++ Se) + 4(b4 + S~)JJ 
× exp 2~2(h*2~alt + k*2~ae2 +/'2~a~3 

+2h*k*#le+2h*l*#xa+2k*l*/~ea) • (21) 
Then 

F(H)  ~ fl_,'f~ exp 2~iH.  r'= 
n = l  

x exp iS  [4(a 4 + Se ) + 4(b4 + Se ~ , 
(22) 

where #ij are the elements of displacement tensor, 
and r'~ is the average value of a vector from the origin 
of the unit cell to an atom. 

One rather simple special case may be noted. 
Consider an atom in the crystallographic b, c plane 
librating about an axis parallel to tha t  plane and 
examine the expression for g for the Okl reflections. 
Then 

cos yJ = 0, b --> ~ ,  h = 0 ,  
and 

then 

g ~ exp 

X0=0 

t~= 0 

{-2~ [ (~*eY~° + z*%~s-a~ + 2k*Z*yozo)JJ]~ 
× exp 2~i (k '9  + 1"5). (23) 
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In other words, if one projects onto a plane contain- 
ing the axis of oscillation, a refinement should converge 
to the average values of the desired set of coordinates 
rather  than  to the equilibrium values with a Debye-  
Waller-like term dependent on the mean-square devia- 
tion from the average. 

When, however, one considers a structure in three 
dimensions or a projection tha t  does not fulfill the 
conditions of the above paragraph, the terms 
t~S/4(ad+S 2) and t~S/4(bd+S 2) may become quite 
significant for higher indices, especially if a and b 
are not too large. 

I t  is interesting to note tha t  the first-order correc- 
tion term, 1) 

, ÷ . 

is equivalent to the approximate correction tha t  
Cruickshank (1956) gives from other considerations. 

The reliability of the above calculation is, of course, 
dependent upon the approximations made. If 

H2 H2 o)vv + o)xx is much greater than about 0.1, it is likely 
tha t  the series approximations used in the integration 
of the scattering function will begin to break down. 

The significance of other approximations and cor- 
rections may  be simply estimated from the resulting 
series and from the derivation of the probability 
density function. 

4. C o n c l u s i o n s  

While noting tha t  the approximations used in the 
derivation of (10) (sin 0 = 0  and cos O= 1-02/2)  may 
be fairly serious in many cases, the approximations 
needed to transform (10) to the usual form of the 
structure factor will also be quite drastic, tha t  is, 
(16), (17), showing tha t  (10) should give a better  
picture of scattering than the usual form of the 
structure factor for some cases. The solution of the 
librator problem for all amplitudes for the one dimen- 
sional case has been indicated by King & Lipscomb 
(1950) in their paper on 'Scattering from a Hindered 
Rotator '  in the form of an infinite series of Bessel 
Functions. I t  is contained in the case n = 1, using the 
notation of King & Lipscomb. 

I t  may  also be seen from equation (10) tha t  as one 
adds higher order structure factors to a refinement 
using the usual form of the structure factor the 
apparent distance of an atom from the center of 
libration will increase due to t~, t~ dependance. This 
effect may be associated with the dependance of 
Cruickshank's (1956, 1961) correction on the Fourier 
peak width. 

I t  should also be pointed out that  if the integration 

is carried out to a term of higher order than two in 0, 
the actual form chosen for the potential function 
becomes important  and the validity of the ( 1 -  cos 0) 
dependance for any given case becomes problematical. 

A suggested method of using (10) might consist fll 
first refining a structure as well as one could using 
the usual relationships, then computing the various 
parameters by methods given by Cruickshank (1956a) 
and this paper and refining for one or two more rounds 
with a least squares program based on (10). 

A P P E N D I X  A 

Der iva t ion  of the  p robab i l i t y  dens i ty  funct ion  

To evaluate (2), i t  is necessary to assume a probabil i ty 
density function on the surface of a sphere of ra.dius Irl- 
At a given temperature,  the exponent in the prob- 
ability function, D will be proportional to the potential 
function. A potential function for an oscillating rigid 
body will then be chosen and related to the dis- 
placement of a vector r from its equilibrium position 
r0 on the surface of a sphere of radius lrl. 

Let r0, a vector from the center of oscillation of the 
rigid body to the equilibrium position of the atom 
under consideration, be expressed by xo i+yoj+zok  
where the unit  vectors i, j, k are parallel to the 
principal axes of oscillation. Then define several 
coordinate transformations: 

x0) /xi  
y0 = (T1) (Y0J, (A1) 
zo \Zol 

Yo) = (T2)~Y0,}, (A2) 
Zol \ Zo I 

l, ii  
y : )  : ( T 1 ) t y i , )  • (A3) 

T1 (Fig. A1) brings z0 parallel to r0 with x0 in a 
plane containing zo and z 0 by rotations 90 around 
z0 and 00 around y'. 

/cos 91 cos 01 - s i n  9~ 
T1 = {sin 7)1 cos 01 cos 7)1 

\ - sin 01 0 

cos 91 sin 01 \ 
sin 7)1 sin 01~ • (A4) 

cos 01 / 

T2 (Fig. A2) represents a rotation of z0 to z0' through 
t t 

an angle 0 about an axis in the x0, Y0 plane, this axis 
being perpendicular to a line (also in the xo, Yo plane) 
which makes an angle 9 with the x0 axis. 

T 2  -.~ 
c o s 2 9 c o s 0 + s i n  e9  
cos 9 sin 9 cos 0 - s i n  9 cos 9 

- c o s  9 sin 0 

cos 0 cos 9 sin 9 -  cos 9 sin 9 
sin2 9 cos 0 + cos ~ 9 

- sin 9 sin 0 

sin 0 cos 9 \  
(A5) 
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I t  m a y  then  be seen t h a t  xl, yl, zl bears the  same 
relat ionship to r t h a t  xo, yo, zo bears to re. Thus, (xo) (x) 

Z0 Zl 

Of the four coordinate systems two are fixed in the  
labora tory ,  these being xo, yo, zo and  Xo, Yo, z0; the  
other  two systems xl, y~, z~ and  Xo", Yo', Zo are f ixed 
in the  rigid body and  ro ta te  wi th  the  body. 

The potent ia l  energy of the  l ibrat ional  mot ion is 
then  described in te rms of three restoring forces t h a t  
are propor t ional  to the  displacement  of the  body from 
its equil ibrium position. 

Defining two unit  vectors (Fig. A3), xo=i  and 
x ~  = x l i  + y l j  + z l k ,  

(xo - x~) e = 2(1 - xo. xl) • (A7) 

"'Y0 

XO ~I X 0 

Fig.  A1, The rela t ion be tween the  x o, Yo, Zo and  %', Yo', Zo" 
sys tems are shown, x o' being in the plane of z o, zo'. The 
vector  r o is parallel  to z'. I t  is the  vector  from the  center  of 
oscillation to the  equil ibrium posit ion of a l ibrat ing a tom.  

z~ 
,t 

I/i 

x0 n 

X0 

Fig. A2. The relat ion be tween the Xo', Yo', Zo" and  Xo", Yo", 
and  zo" sys tems is shown. Zo" is ro t a t ed  th rough  an  angle 
0 f rom z o" abou t  an axis which is in the  xo', Yo" plane, this 
axis being perpendicular  to line n which makes  an angle 
wi th  the  x o' axis and  is in the Xo', Yo' plane. 

V = 2[k1(1 - Xo. xl) + k2(1 - yo. yl) + k3(1 - zo. z l )] .  (AS) 

The diagonal elements of the  t rans format ion  (A6) 
were used to find the  components  in (A8). Let t ing 

cos 0 = 1 - 0e/2 + 04/24, (A9) 
and 

~ '  = 0 COS ~0 

fl' = 0 sin ~ .  (A10) 

X0 

Xl 

Y 

v - Yo 
Y0 

Fig. A3. Model for calculat ion of the  poten t ia l  funct ion.  
Xo, Xl, etc. are un i t  vectors.  The potent ia l  is obta ined  for 
example  by  squaring the  dis tance Xo-X 1 and  mul t ip ly ing  
by  the  spring cons tan t  k 1. 

To the four th  order in ~'  and fl', 

V = a'2(kl cos 2 ~1 + k~ sin2 ~1 + ks) 

+ a ' f l ' [2  sin ~1 cos ~1 cos 01(k2- kl)] 

+ fi'e[kl (sin e ~1 + cose ~1 sins 01) 
+k2 (cos e ~ l + s i n  e ~1 sin e 01)+k3 cos e 01] 

+ (~'4/12)( - / 0  cos 2 ~1 -/ca sin e ~ 1 -  ks) 

+ (c~'8fl ' /12)[-2 sin ~1 cos ~1 cos 01(k2-kl)]  

+ (a '2f l '2 /12)[-  kl(1 + cos e ~1 sin s 01) 

-k~(1  + s i n  e ~1 sin e 01)-k8(1 +cos  ~ 01)] 

+ (a ' f l '3/12)[--2 sin ~1 cos ~1 cos 01(--kl+ke)]  
+ (f l '4/12)[-  kl (sin e ~1 + cos e ~1 sin e 01) 

- ks (cos 2 ~1 + sin ~ ~1 sin s 01) - k3 cos e 01] . (A11) 

Equa t ion  (A8) indicates t h a t  (ke+k3) is the  t e rm 
associated with  w51 in the  probabi l i ty  funct ion used 
by  Cruickshank (1961) to describe oscillating motion 
(in an  axial  system parallel  to the  principal axes of 
oscillation); 1/wee and  1/w88 m a y  be similarly de- 
scribed. 

I f  oscillation is much smaller about  one axis t h a n  
the others, e.g., k3 --> oo, so t h a t  the  body must  ro ta te  
about  z, then  a = 0  and 0~=~/2  if V is to remain  
finite. I n  other  words if one force constant  is so 
great  t h a t  most  of the  oscillation is about  the  axis 
associated with it, the  best description would be a 
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one-dimensional motion about  the axis;  i.e., r0 should 
be perpendicular  to the axis of rotation. 

In  section 2 only the quadrat ic  terms in the distr ibu- 
t ion funct ion are considered since the only readi ly 
discernible way to integrate (4) if higher order terms 
are used would consist in expanding  these terms as 
a series. This procedure would lead to a f tmction even 
more unwieldy t han  the one derived. 

The form of the expression used is 

D = exp ( - V) = exp [ -  (Cla '~" + Ceo¢'fl' + C8fl'2)]. (A12) 

The rotat ion about  r0, 

where 

sin 2~pt= [ 1 + ( 1  C~+(C3-CI)2/½]/2 (AI4) 

will t ransform D (oc', fl') to the form 

D(c~, f l ) = e x p  [-(a2ae+befle)]. (A15) 

Here a "z and  b 9 m a y  be interpreted as one over twice 
the principal  mean-square angular  displacements on 
the surface of the sphere. 

A P P E N D I X  B 

C a l c u l a t i o n  o f  a v e r a g e  v a l u e s  o f  c o o r d i n a t e s  

The average of a funct ion of 0" and ~"  is 

where F(a, fl) is obtained by expanding f(O", of") 
in a power series in 0" and using (B2). The terms 
1 -- (a s + fl2)/6 + (oc s + fl2)2/120 are the first three terms 
of sin 0"/0".  This term follows from 

da dfl = 0" dO" dcf". (B4) 

In  general to fourth order in .~ and fl, F ( a ,  fl) 
has the form 

F (a, fl)=B~ + Bsae+ Bsfl" + Bdc~4 + Bs~efle+ B6fl 4, 
(B5) 

where the terms in odd powers of ~ and fl have been 
omit ted since their  average is zero. 

Integrat ion of (B3) gives 

Bs Ba 1(3_B4 B2' 
F(O"' ~") = B~ + -2-~ae + -f~ +-~4 \ 4 -  i-2) 

+ ~ + ~  - i - ~ )  (86)  
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l'2~"d~" l'~dO,, sin 0 . . . .  J r0  . . . . . ,  ~ ) exp [ -  (a 2 cos z ~"  + b 2 sin s ~")0"2] 
t J0 ¢ 0  

f (o" ,  ~") = ~s ,..,, 
~'~d,"\  dO" sin O" exp [ - ( a  s cosecf"+bSsin2T")O"2 ] 
' ) 0  0) 0 

Using the t ransformat ion 
---- 0" COS (p" 

fl = 0" sin ~",  
these integrals can be wri t ten  in the form 

(B1) 

(B2) 

frO" of")= 

dfl 1 - (a2 + fl') ( a e+  fie)2 
-oo 6 + 120 - . .  F (  

~, ~) exp [ -  (as~+bS~")] 

_ _ 6 + 120 ] 
exp [ - (aecx 2 + bSfl2)] 

(B3) 


