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The Structure Factor for a Harmonic Quasi-Torsional Oscillator

By M. I. Kay* anp D. R. BEHRENDT
Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio, U.S.A.

(Received 8 January 1962 and in revised form 26 March 1962)

The scattering function for a harmonic librator has been calculated for small angles of oscillation.
The results are compared with the usual form of the structure factor. To calculate the probability
density function for an atom constrained to move on the surface of a sphere while oscillating as
part of a rigid body, the harmonic potential function for an oscillator was derived as a function of
angular displacements on the surface of the sphere.

1. Introduction

For the past several years, vibrations of polyatomic
ions and molecules have been analyzed in terms of
rigid body motion. This rigid body treatment (e.g.,
Cruickshank, 1956) consists of separating the molecular
motion into two parts: a translational vibration and
a torsional oscillation or libration. While translational
vibrations can be satisfactorily described by the
Debye-Waller theory (James, 1954), the torsional
oscillations cannot since they definitely do not satisfy
the assumption that the vibration consists of normal
linear displacements. In view of this fact, the effect
of librations on the refinement of crystal structures
using the usual structure factor equations is rather
obscure, and a treatment that explicitly takes the
librations into account is desirable.

In this paper, an expression will be derived that is
valid for small oscillations, and the result will be
compared with the usual form of the structure factor.

2. Theory

The model considered below consists of a set of atoms
oscillating about a point. No translational motion will
be included since the Debye—Waller theory accounts
for this motion quite adequately.

If the position vector of the nth atom in the struc-
ture factor expression is written as rj-+r,, where rj,
is the vector to the center of oscillation and r, is the
vector from the center of oscillation to the instan-
taneous atomic position, then the structure factor,

N ——
F(H) = 3 fnexp [27H.15] exp [ZmiH 1], (1)
n=1

where H is the reciprocal lattice vector, N is the
number of atoms in the unit cell, and f is the scatter-
ing factor for the nth atom. Bars over a quantity
indicate an average over the quantity.

The function ¢, defined by
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gn=exp [27iH.T5]= S exp [27iH.r,]. DdA / S DdA ,

(2)
contains the scattering by the torsional oscillator.
Since the atomic position vectors are taken relative
to centers of libration, [r,|is a constant for a given =n.
The average in (2) is computed by integrating over
the surface of a sphere of radius |r,| by using an
appropriate distribution function D which is propor-
tional to the probability that r, lies in dA4.

In order to reduce the complexity of the notation,
the subscript = will be omitted in the remainder of
the paper. Cartesian coordinate systems will be used
in real and reciprocal spaces; thus r=xi+yj+zk, and
H=n*i4+k*j+1*k. Here i,j, and k are orthogonal
unit vectors; i.e. z, ¥, and z have units of length and
k¥, k*, and I* are not integers but the components
of the reciprocal lattice vector. The sum h*x+ k*y + ¥z
will reduce to A(z/a)+ k(y/b)+1(z/c) in the crystallo-
graphic system since dot products are invariant under
the transformations used.

To simplify the integrations in (4), the following
transformations were made. If ro, the vector from the
center of libration to the equilibrium position of an
atom, has the polar coordinate angles 0o and g,

the transformation
x\ [cos o cos po —sin go sin O cos o\ [z’

y)=|cosfosin po cosgo sin G sin @oly' | (3)
cos o 2

z —sin G 0

relates the primed and unprimed systems such that
the 2’ axis is parallel to 1y, and the 2’ axis is in a plane
containing both z and 2z’ (Figs. 1(e) and (b)). The
transformation

z’ cosy —siny 0\ /2"
y'|=Isiny cosy O]ly" (4)
2 0 0 I/\z"”

relates the double-primed and primed systems such
that the principal axes of libration on the surface of
the sphere as defined in Appendix A are parallel to
' and y” (Fig. 1(b)). The instantaneous position of
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z z'and z”

x @

() ©

Fig. 1. Coordinate transformations. (a) «’ is in the plane of
z, 2. The vector r (parallel to z’) is the vector from the center
of oscillation to the equilibrium position of a librating atom.
(b) z”” and y*’ are the principal axes of libration. (c) Polar
coordinate system used to express position of r.

the vector r oscillating about the vector ry is thus
expressed in the spherical coordinates r, 8", " (Fig.
I(c)), where r is a constant equal to |ry|.

From these transformations, one obtains:

Z=7,[cos B cospo(cosysin b’ cosp’ —sinysin 6" sing"’)
—sin @o (sin y sin 6"’ cos @'’ + cos yp sin 6"’ sin ¢”)
+¢0s @o sin 6, cos 6]

y=ro[cosbosing, (coswsinG”cos<p"—simpsin9"sinq;”)
+cos o (sin y sin 6" cos ¢’ + cos y sin 0" sin ¢'’)
~+sin @ sin o cos 6'']

z=79 [—sin o (cosy sin 6"’ cos ¢’' —siny sin "’ sin @)
+¢0s o cos 6] . (5)

The probability density function was chosen as

D = exp [—(a?a2+b262)] (6)
‘where
o« = 0" cos @
B = 0" sin ¢". (7

The assumptions and derivation that lead to this
function are given in Appendix A.
112

In (6) a2 and 42 are equal to w2 and {w.2, respec-
o g 20 WY 2z
tively, where w,? and w? are the respective mean
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square angular displacements parallel to z'* and g’
of the atom oscillating about ro.
For small angles,
sin 6" =6"
cos §"'=1—6"2/2 . (8)

Then the scattering function averaged over the
surface of a sphere is

S dzxg df exp 27iH. T exp — (a2x2+b2f2)
e = (9)

\' doc\. dpf exp — (a®x2+b2p2)

— oo

g:

Because of the exponential damping factor the
difference between integration over a sphere and over
all of the «,  space is small.

By substituting (5) and (8) into (9) and integrating,
(9) becomes

_ 1 —t2g2
T W saa eXp{L(ausz)]

N [z (28 B ta,n—;S/a2 + 4(ai§f,82))]}

1 —13b2
(s o F {[4(b4+82)}
+[i(—tan'1S/bZ+ S )]}
2 40 8|

8= 7 (h*zo + k*yo + 1*2) ,

(10)

where

| 2070 70Yo .
t_‘=2.7t 1h* (_xﬁgjlﬁ Ccos p— &gggﬁm smyp
20Yo0 ZoTo .
+ k* [—— 7 COS Y + ———5— sin I
@+ Y T gy St Y
= (a4 cos i
20%0 .
t =2n{h*[— 5= Sin
s (w5 +3)V>

b [ ~20Yo

Yoro
YT

AN
(@5 +yo)

g e

+ 1% [(@+ 32 sin w]} :

cos y)J

(11)

3. Interpretation

Equation (10) accurately describes the scattering to
the degree that the approximation (8) is valid. It
would now be interesting to establish relationships
between (10) and the usual form of the structure
factor expression.

Defining the quantities 7 and 72 as the average and
mean-square projections of r on r, gives
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o7 27
s S reosf”sinf’’ exp[ — (a2cos?e’’ +b2sin2p’)0""2]de" d6”
- 0 do
r= o7 027 ’ (12)
S S sin@" exp [ — (a2cos2g’’ +b2sin2¢’')§""2]d " d6”
o Jo
W7 p2n
S S r2c0s26’’sinf" exp[ — (a2 cos?g’’ +b2sin2g"’)6''2]dg" dO”
72 = N0 (13)

0

It may be shown that (see Appendix B)

Fer [1 LN O ] (14)
=ro| 1=~ ae T igaepe T 96ad TO6B T |
and
2
= 2 - 7‘0 1 l.
(r—r):rz—ﬂ:—g(a—é-i-ﬁ-}-...). (15)
It
82 S2
a2>?t§ and bz>?2, (16)
then
S2 —1/4 S2 —1/4
(1+3) (+%)
LYY P 82 SZH
’“( _1&71)( _4F>Ne p[—(4a4+W
11
= exp| ~2tan+ kgt Pl g+ ga) > (07
and
exo —| t2a2 15b2 }
P [4(a4+82)+4(b4+82)

~exp|— (L2 4 )] qs)
A~ exp da2 ' 4b2/ ]

The terms in the exponents of (17) and (18) are of
the form

2u(h*2 psy + P2 piza. . . +2R¥E pit . L)

It is possible to prove that the terms i ete. are the
tensor components of a displacement matrix; i.e.,
they correspond to the usual components of an an-
isotropic temperature factor. In the z'’, y”, 2" space,
the principal mean-square displacements perpendicular
to ro are riw,? and rjw,2 or rg/2a® and 7§/2b%

The mean-square displacement from the average
value of the projection of r on ro was given in (15).
The mean-square displacement matrix in the double-
primed space is then

2262 0 0
U’ = 0 1202 0 . (19)
0 0 r2[1/8a%+1/8b4]

To find the matrix in z, y, z space, multiply U" on
the left and right by the two transformation matrices
defined in (3) and (4) and their inverses (transposes),

07T (27T
S S sin@’ exp[ — (a2cos?g’’ + b2sin2p’’)0"'2]d"’ d6”
0

respectively. The components of the resulting matrix
are identical with the coefficients of h*2, k*2, h¥k*,
ete. in (17) and (18). In other words, to the extent
that the approximations in (17) and (18) are valid,
the exponential damping factor in g may be inter-
preted as an anisotropic Debye-Waller factor.

The effect of libration on the apparent coordinates
may be partially determined by using the approxima-
tion

S S
3 (tan“l e + tan-! —b—2>
1

2 1
~ —4{[ (h*xo+k*yo+l*20) . (;l—é + 55) . (20)

From the preceding paragraph and equations (10),
(14), and (20)

g ~ exp {2m’(h*i+ TG 1%3) 4§
[ 228 128
X +
4(at+8?%) 40"+ 5’2)]}
x eXp 272(h*2p1y + k*2 proe + %2 uss

+ 2R*R* uao -+ 2R g+ 2k¥F pas) . (21)
Then
N -
F(H) ~ 3 fn exp 27iH. 1,
n=1 o .
: ta t
o {18 [4(a4+6’2) ST SZ)}} exp 2a%(h*2ps. . .),
22)

where ui are the elements of displacement tensor,
and r, is the average value of a vector from the origin
of the unit cell to an atom.

One rather simple special case may be noted.
Consider an atom in the crystallographic b, ¢ plane
librating about an axis parallel to that plane and
examine the expression for g for the Okl reflections.
Then

cosp=0, b »o0, h=0,

and
o= 0 )
then
t,=0
(le*2y + 1¥222 4+ 2k*[*yoz0)
e )

x exp 2ni(k*y+1*z) . (23)
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In other words, if one projects onto a plane contain-
ing the axis of oscillation, a refinement should converge
to the average values of the desired set of coordinates
rather than to the equilibrium values with a Debye-
Waller-like term dependent on the mean-square devia-
tion from the average.

When, however, one considers a structure in three
dimensions or a projection that does not fulfill the
conditions of the above paragraph, the terms
$28/4(a*+82) and #3S/4(b*+S%) may become quite
significant for higher indices, especially if @ and b
are not too large.

It is interesting to note that the first-order correc-

tion term,
1 1 WyE Wy
et a) = (2 +%)

2

is equivalent to the approximate correction that
Cruickshank (1956) gives from other considerations.

The reliability of the above calculation is, of course,
dependent upon the approximations made. If
wyy+ wyz is much greater than about 0-1, it is likely
that the series approximations used in the integration
of the scattering function will begin to break down.

The significance of other approximations and cor-
rections may be simply estimated from the resulting
series and from the derivation of the probability
density function.

(24)

4. Conclusions

While noting that the approximations used in the
derivation of (10) (sin =6 and cos §=1—62/2) may
be fairly serious in many cases, the approximations
needed to transform (10) to the usual form of the
structure factor will also be quite drastic, that is,
(16), (17), showing that (10) should give a better
picture of scattering than the usual form of the
structure factor for some cases. The solution of the
librator problem for all amplitudes for the one dimen-
sional case has been indicated by King & Lipscomb
(1950) in their paper on ‘Scattering from a Hindered
Rotator’ in the form of an infinite series of Bessel
Functions. It is contained in the case n=1, using the
notation of King & Lipscomb.

It may also be seen from equation (10) that as one
adds higher order structure factors to a refinement
using the usual form of the structure factor the
apparent distance of an atom from the center of
libration will increase due to £, ¢ dependance. This
effect may be associated with the dependance of
Cruickshank’s (1956, 1961) correction on the Fourier
peak width.

It should also be pointed out that if the integration

cos? @ cos § +sin2 g
T: = ( cos @ sin ¢ cos § —sin ¢ cos @
—cos @ sin §

—sin @ sin 0
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is carried out to a term of higher order than two in 6,
the actual form chosen for the potential function
becomes important and the validity of the (1~ cos )
dependance for any given case becomes problematical.

A suggested method of using (10) might consist in
first refining a structure as well as one could using
the usual relationships, then computing the various
parameters by methods given by Cruickshank (1956a)
and this paper and refining for one or two more rounds
with a least squares program based on (10).

APPENDIX A

Derivation of the probability density function

To evaluate (2), it is necessary to assume a probability
density function on the surface of a sphere of radius |r|.
At a given temperature, the exponent in the prob-
ability function, D will be proportional to the potential
function. A potential function for an oscillating rigid
body will then be chosen and related to the dis-
placement of a vector r from its equilibrium position
ro on the surface of a sphere of radius |r|.

Let ro, a vector from the center of oscillation of the
rigid body to the equilibrium position of the atom
under consideration, be expressed by i+ yoj+ 20k
where the unit vectors i,j, k are parallel to the
principal axes of oscillation. Then define several
coordinate transformations:

Zo x(;
(yo) = (T1) <?/0) , (A1)
20, 2.
[To g
(y) - (7o) <y) , (A2
2 2
1) Ty
(yl) = (1) (y) (43)
21 20/

T. (Fig. Al) brings z; parallel to ro with 2, in a
plane containing zo and z, by rotations @o around
zo and 6 around y'.

cos g1 cos 1 —sin @1 cos ¢ sin Oy
T) = (sin @1 cos 61 cos @y sin ¢ sin 61) . (A4)
—sin 6; 0 cos 01

T2 (Fig. A2) represents a rotation of z; to z, through
an angle 6 about an axis in the z;, y, plane, this axis
being perpendicular to a line (also in the x4, y, plane)
which makes an angle ¢ with the x, axis.

sin? ¢ cos 6 +cos? @ sin § sin @

cos 6 cos ¢ sin ¢ —cos p sin ¢ sin 6 cos <p>
cos 6
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It may then be seen that 21, #1,z1 bears the same
relationship to r that o, %o, 20 bears to ro. Thus,

Xo X1
(.7/0) = (T)(T)(T1)* (?/1) .
20, 21,

Of the four coordinate systems two are fixed in the
laboratory, these being o, %o, 20 and g, Yo, 2; the
other two systems z1, y1,21 and ay, ¥, 2, are fixed
in the rigid body and rotate with the body.

The potential energy of the librational motion is
then described in terms of three restoring forces that
are proportional to the displacement of the body from
its equilibrium position.

Defining two unit vectors (Fig. A3), x,=i and
X1=xi+y1j+ 2K,

(A6)

(Xo—X1)2=2(1—Xo.X1) . (A7)
%y .
To
b } Yo
|
|
! Yo
Xo ? xg

Fig. Al, The relation between the zy, ¥, 2, and %", ¥y’ 2o
systems are shown, ,” being in the plane of zj, 7. The
vector r, is parallel to z’. It is the vector from the center of
oscillation to the equilibrium position of a librating atom.

fr

Xo

Tig. A2. The relation between the m,’, ¥y, 2," and %", Yo"’
and z,”” systems is shown. z,”’ is rotated through an angle
0 from z,” about an axis which is in the zy’, ¥,” plane, this
axis being perpendicular to line n which makes an angle ¢
with the z,” axis and is in the xy’, y," plane.
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V=2[k1(1 —Xo.X1)+ k(1 —yO.y1)+k3(1 —29.21)]. (A8)

The diagonal elements of the transformation (A6)
were used to find the components in (A8). Letting

cos O=1—02/2404/24 , (A9)
and
o' = 0 cosg
B = 0sing (A10)
o 2,
Zokk’ 1,
Y4
Y1
ko
P Yo
Yo
Xo
k5 x,
Xo
«
X4

Fig. A3. Model for calculation of the potential function.
X,, X, etc. are unit vectors. The potential is obtained for
example by squaring the distance x,-x, and multiplying
by the spring constant k.

To the fourth order in «' and £,

V = «"2(ky cos? g1+ ke sin? @1+ k3)
+ o' B'[2 sin @1 cos @1 cos O1(kz— k1)]
+ ‘B'z[kl (si112 @1+ cos? @1 sin? 61)
+ k2 (cos? g1 +sin? gy sin2 01) + k3 cos? 61]
+ (a/4/12)(— k1 cos? @Y1— ko sin? Y1— ks3)
+(a'38’/12)[ —2 sin @1 cos @1 cos B1(ka—k1)]
+ (a'2p2/12)[ — k1(1 + cos? @1 sin? 61)
— ka(1 +sin2 ¢, sin? 601) — k(1 + cos? 01)]
+ (o’ B73/12)[ — 2 sin @1 cos @1 cos O1(—k1+k2)]
+ (B'4/12)[ — k1 (sin? g1 + cos? gy sin? 61)

— kg (cos? @1 +sin? @; sin? 01) — ks cos? 61] . (All)

Equation (A8) indicates that (kz+ks) is the term
associated with wi in the probability function used
by Cruickshank (1961) to describe oscillating motion
(in an axial system parallel to the principal axes of
oscillation); 1/wsz and 1/wss may be similarly de-
scribed.

Tf oscillation is much smaller about one axis than
the others, e.g., ks — oo, so that the body must rotate
about z, then x=0 and 6;==/2 if V is to remain
finite. In other words if one force constant is so
great that most of the oscillation is about the axis
associated with it, the best description would be a
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one-dimensional motion about the axis; i.e., ro should
be perpendicular to the axis of rotation.

In section 2 only the quadratic terms in the distribu-
tion function are considered since the only readily
discernible way to integrate (4) if higher order terms
are used would consist in expanding these terms as
a series. This procedure would lead to a function even
more unwieldy than the one derived.

The form of the expression used is

D=exp(—V)=exp[— (C1x'2+Cao' B’ +C34'2)]. (Al2)
The rotation about ry,
«'\ _ [eosyr —siny1) [«
()= (. cosw) (5). @
where
in2 w, — 2
sin? y [1+< o 03_01 2> J/ (Al4)
will transform D (o', ') to the form
D(«, B)=exp [— (a2a2+b22)] (A15)

Here a2 and b2 may be interpreted as one over twice
the principal mean-square angular displacements on
the surface of the sphere.

«

APPENDIX B
Calculation of average values of coordinates

The average of a function of §” and ¢’ is

S de” \ df" sin 6" f(60",¢"’) exp [— (a? cos® ¢’’ +b2 sin? ¢")§""2]
17 0
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ll

where F(«, ) is obtained by expandlng fo", ¢

in a power series in 6" and using (B2). The terms

1 — (24 f2)/6 + (x2+ (2)2/120 are the first three terms

of sin 0”’/6"". This term follows from

dodf=0"d0"de". (B4)

In general to fourth order in « and B, F(a, )
has the form

F(w, f)=Bi+ B2a?+ B3fi2+ Bax4+ Bs 522+ B,
(B5)

where the terms in odd powers of & and f have been
omitted since their average is zero.
Integration of (B3) gives
I 7 B2 B3 1 3B4 B‘Z\
F(6”,¢") = Bi+ 5= +2b2 5<T-1—2)

2 2
By 1 <3Bs Bs)

dabe T ;) - (B6)

+ T
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f(@l" ' ) = 25 o : (Bl)
S d(p"s df" sin 0" exp [ — (a? cos® @'’ + b2 sin2 ¢'')6''2]
Using the transformation ° °
o = 0" cos @
ﬁ = 0', sin (p”, (BQ)
these integrals can be written in the form
000 0 2 2 2 2)2
S dzxg dﬂ(l—(‘x 'lb:ﬂ) (txl*z'f) ..)F(“, B) exp [—(a ,‘2_*_52}3 )]
f(en’ (pl/) — —00 o —00 S (B3)

0‘2 +ﬂ2

ol (-5

(o2+B2)2 — (a2a2+5242)]



